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a b s t r a c t

Range sensors, in particular time-of-flight and stereo cameras, are being increasingly used for applica-
tions such as robotics, automotive, human-machine interface and virtual reality. The ability to recover
the geometrical structure of visible surfaces is critical for scene understanding. Typical structured indoor
or urban scenes are often represented via compositional models comprising multiple planar surface
patches. The RANSAC robust regression algorithm is the most popular technique to date for extracting
individual planar patches from noisy data sets containing multiple surfaces. Unfortunately, RANSAC fails
to produce reliable results in situations with two nearby patches of limited extent, where a single plane
crossing through the two patches may contain more inliers than the ‘‘correct’’ models. This is the case of
steps, curbs, or ramps, which represent the focus of our research for the impact they can have on cars’ safe
parking systems or robot navigation. In an effort to improve the quality of regression in these cases, we
propose a modification of the RANSAC algorithm, dubbed CC-RANSAC, that only considers the largest
connected components of inliers to evaluate the fitness of a candidate plane. We provide experimental
evidence that CC-RANSAC may recover the planar patches composing a typical step or ramp with sub-
stantially higher accuracy than the traditional RANSAC algorithm.

! 2010 Elsevier B.V. All rights reserved.

1. Introduction

Range sensors, in particular time-of-flight (TOF) and stereo
cameras, are being increasingly used for applications such as
robotics, automotive, human-machine interface, and virtual real-
ity. The ability to recover the geometrical structure of visible sur-
faces (for example, using parametric models such as planar
patches or other geometric primitives) is critical for scene under-
standing. For example, consider a sensory system for assisted back-
up and parking (Glazduri, 2005; Paine et al., 2005; Backup systems,
2004; Hsu et al., 2007). To be really effective, such systems should
be able to reason about the scene structure, identifying, for exam-
ple, planar patches and discontinuities. In particular, they should
robustly identify and localize structures such as curbs and ramps,
like those of Fig. 1, as these are important features for safe parking.

A classical method for range analysis with this type of struc-
tures is to extract the dominant planar structures (for example,
the ‘‘ground plane’’), and to model the geometric feature as a com-
position of planar patches. Unfortunately, the presence of multiple
planar structures at close vicinity and orientation, may impair
detection of the dominant plane using classical methods (e.g., RAN-
SAC (Fischler and Bolles, 1981)). Consequently, hazard detection

approaches which rely on detection of a dominant plane, such as
the one of Hsu et al. (2007), may be adversely affected by the pres-
ence of curbs and ramps. An example is shown in Fig. 6 (c): rather
than selecting one of the three possible planar patches forming the
curb, RANSAC chose a plane intersecting all three. This type of
error, which is by no means unusual (Stewart, 1997), may impair
height measurements of the objects in the scene, since height is
usually measured with reference to the ground plane.

This paper presents an improved algorithm for plane fitting,
dubbed CC-RANSAC, shown to be more reliable than RANSAC in
these situations. Whereas RANSAC uses the whole set of inliers
to evaluate the fitness of a candidate plane, CC-RANSAC only
considers the largest connected components of inliers at each iter-
ation. This seemingly minor modification is in fact key to a sub-
stantial improvement in estimation accuracy, as evaluated with
experiments in synthetic and real data from a TOF camera.1

This contribution is organized as follows. We first review the
major algorithms for range analysis as well as curb and step detec-
tion in Section 2. In Section 3 we describe out approach to plane fit-
ting and evaluate it on synthetic data (Section 3.1). We then
perform a thorough case study in Section 3.2. Finally, in Section
3.3 we present more results on real data.
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2. Background and previous work

2.1. Algorithms for range processing

Research on range analysis represents a vast body of work,
encompassing Computer Vision, Robotics, and Computer Graphics.
In the following we attempt a simple organization, with the pur-
pose of providing some context and background for the proposed
research. A simple categorization of range analysis algorithms
may be drawn based on whether local or global descriptors are
employed. Local descriptors include local surface normals (Lalonde
et al., 2005; Mitra et al., 2004), ridges (Eberly et al., 1994), and
discontinuities (Tang et al., 2004; Tong et al., 2001; Adams and
Kerstens, 1998; Adams, 2001). Contiguous point sets with similar
local descriptors may be clustered in space in order to identify ex-
tended regions. For example, chains of points with high curvature
may form a curb line, and groups of adjacent points with the same
normal may identify a planar patch. Only local analysis of the range
data is required for this type of descriptors, which can therefore be
computed very quickly. For the same reason, however, local
descriptors are susceptible to measurement noise and missing
measurements.

‘‘Global’’ descriptors, on the converse, are parametric represen-
tations (typically planar or quadratic) of relatively large surface
patches. All measurements in a patch contribute to the estimation
of the parameters of the global descriptor. For example, if a set of
measurements are known to be part of a plane, then simple linear
regression (perhaps using principal component analysis, PCA) can
provide the corresponding planar equation.

When the measurements are affected by ‘‘outliers’’ (data points
that differ substantially from the standard noise model), robust
procedures should be employed (Stewart, 1999; Meer, 2004). For
example, M-estimators find the model parameters that minimize
a cumulative ‘‘robust’’ loss function. With respect to the quadratic
loss function used for standard linear regression, robust loss func-
tions penalize more those samples that deviate heavily from the
model. Possibly, the best known robust parametric estimators in
Computer Vision are RANSAC (Fischler and Bolles, 1981) and the
Hough transform (Illingworth and Kittler, 1988). Both can be seen
as particular instances of M-estimators (Stewart, 1999). Another
popular robust estimation method is the Least Median of Squares
(LMedS) (Rousseeuw and Leroy, 1987) and its variants, which in-
clude the Least Kth of Squares (LKS). It can be shown that LMedS
and LKS are instances of so-called S-estimators, which are a partic-
ular case of M-estimators (Chen et al., 2001). Another approach to
dealing with outliers is to explicitly model them as uniformly dis-
tributed. This assumption is at the basis of the MLESAC algorithm
(Torr and Zisserman, 2000).

An important parameter of robust estimators is the ‘‘scale’’, e, at
which they operate. Intuitively, those points that are at a distance
larger than e from the estimated plane are considered ‘‘outliers’’;
the remaining points are ‘‘inliers’’. Clearly, the scale depends on
the variance of the inliers, usually modeled as normally distrib-
uted. The choice of scale may critically affect the performance of
an estimator. A number of solutions to the scale estimation prob-
lem exists, including joint estimation with the model parameters
(Huber, 1981), minimum unbiased scale estimation (MUSE (Miller
and Stewart, 1996)), adaptive least Kth order square estimation
(ALKS (Lee et al., 1998)) and modified selective statistical estima-
tion (MSSE (Bab-Hadiashar and Suter, 1998)). When the variance
of the inliers is not constant (heteroscedastic data), then more
complex robust algorithms should be used (Subbarao and Meer,
2005).

In general, a given planar patch occupies only a finite portion in
the image, with other, competing planar regions present as well.
There are three main approaches for the simultaneous segmenta-
tion and estimation of planar regions in the same image. The first
approach, which we use for the experiments in this paper, is to
simply use a robust estimator to extract a ‘‘dominant’’ planar re-
gion, by considering all the remaining points (including any other
planar regions) as outliers. After finding the planar region and
removing the inliers, the operation is repeated on the remaining
points, until no more sizable planar structures can be found. This
algorithm is simple and intuitive, however, the presence of multi-
ple structures may impair the estimation of individual planar
patches, especially if the scale is not estimated correctly. This phe-
nomenon was studied in detail (Stewart, 1997; Chen et al., 2001).

The second approach to multiple model estimation is to run a
simultaneous, concurrent optimization over all planes visible in
the image. This can be obtained using the Expectation-Maximiza-
tion algorithm (an iterative technique akin to K-means clustering)
(Liu et al., 2001; Triebel et al., 2005) or the recently developed Gen-
eralized PCA algorithm (Vidal et al., 2005). In this case, each plane
is represented explicitly, rather than resorting to the notion of
‘‘outlier’’ with respect to a dominant structure. While intuitively
more appealing, this approach requires the joint estimation of
the (unknown) number of planar surface elements in the scene,
an operation that often proves challenging (McLachlan and Peel,
2000).

The third family of algorithms is based on region growing (Besl
and Jain, 1988; Taubin et al., 1991). Starting from some ‘‘seed’’
points or regions, homogeneous patches are grown concurrently
by adding neighboring points consistent with the model. Regions
that have similar models can then be merged together. Both region
growing andmerging can be performed using robust criteria (Boyer
et al., 1994; Koster and Spann, 2000). Region growing is a simple

Fig. 1. An example of a curb (a) and of a ramp (b). These types of features must be identified for safe parking.
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and fast algorithm, but relies on the selection of good seed points,
which may be difficult to obtain, especially when planar patches
of interest occupy only a small portion of the image. Note that
region growing can also be used as an initial step for subsequent
robust parameter estimation (Unnikrishnan and Hebert, 2003).

2.2. Curb and step detection using range data

Curb detection over short distances for safe driving has been
demonstrated at CMU with a laser striper (Aufrere et al., 2003).
The problem with a fixed laser striper is that the viewing geometry
is very limited, while our task requires the ability to detect features
over a rather wide field of view.

Se and Brady (1997) used a stereo camera pair to detect curbs
and steps. They detect candidate curbs by finding clusters of lines
in an image using the Hough Transform. Then, in order to classify a
curb line as a step-up or step-down, they compute the ground
plane parameters of the two regions separated by the curb line.
This allows one to precisely estimate the height of the curb.

The work of Turchetto and Manduchi (2003) combined stereo
and visual information to find step edges. The idea behind this
approach is that a curb’s edge usually generates a brightness edge
in the image, and thus, in the neighborhood of the projected curb’s
edge, the elevation gradient and the brightness gradient are ex-
pected to both have high values and to be aligned. Accordingly,
detection is based on a weighted Hough Transform on brightness
edge points, with weights values proportional to the scalar product
of the brightness gradient and of the depth gradient in the image.

This idea is pushed further in the work of Lu and Manduchi
(2005). For each surface element within a certain distance from
an estimated ground plane, a surface curvature measure is com-
puted on the range data, characterizing the likelihood that the
point belongs to a curb or step edge. Segments in the image that
are characterized by high brightness gradient (edges) and high sur-
face curvature are extracted by means of a weighted Hough trans-
form. Finally, these segments are reprojected back into the 3-D
scene. The algorithm produced the endpoint of a 3-D segment rep-
resenting the curb edge, and could be used also to characterize
staircases.

More recently, Pradeep et al. (2008) proposed another stereo-
based system for curb detection that is based on plane fitting. Ten-
sor voting is used to calculate consistent normals at each data
point, which allow for clustering into planar patches.

3. Regression and CC-RANSAC

As discussed previously, in the presence of curbs or small steps,
dominant plane detection may produce unsatisfactory results. This
was noted, for example, by Lu and Manduchi (2005), where it was
shown that the estimated ‘‘ground plane’’ was not reliable enough
for detection of small steps. In order to understand this behavior, it
may be useful to quickly review some basic concept of planar
estimation.

Planar regression from a set of 3D point seeks for a plane P that
minimizes some measure of observed ‘‘fitness’’ to the data points.
If di is the Euclidian distance of the ith data point to a candidate
plane P, different measures of the fitness oðPÞ can be considered:

o ¼ $
X

i

d2
i ðLSÞ

o ¼ $median d2
i

n o
ðLMedSÞ

o ¼ jIeðPÞj ðRANSACÞ

ð1Þ

where IeðPÞ is the set of inliers (i.e., data points with di 6 e for a gi-
ven threshold e) and jIj represents the cardinality of the set I. In the

Least Squares approach (LS), the plane P with maximum fitness o
can be found in closed form. In the other two cases, random sam-
pling can be used for minimization. In general, when the variance
of the noise is known, at least approximately, RANSAC is preferable
to LMedS due to its lower computational cost. Both LMedS and
RANSAC are superior to LS when outliers are expected or, as in
the scenarios considered here, when multiple planar models are
present in the scene.

However, as mentioned earlier, even RANSAC (or LMedS) may
provide poor results when the scene contains two or more planar
patches at short distance from each other. This phenomenon was
studied at length by Stewart (1997). This is not a defect of sam-
pling: rather, the proposed measure of fitness o is not adequate,
in the sense that the planes representing different surfaces in the
scene do no necessarily produce large values of fitness o. This is
shown by way of example in Fig. 6. In this case, the plane that max-
imizes RANSAC fitness o (i.e., the plane receiving the highest num-
ber of supporting inliers) is shown in a Fig. 6 (c). This plane
straddles across the two planes representing the top and bottom
surfaces of a curb. Similar results are obtained using the LMedS
criterion.

Thus, even the robust fitness measures in (1) fail to correctly
identify the individual visible planar components. We argue that
the main problem with such measures is that they neglect the
spatial coherence typically exhibited by inlier points. Accordingly,
we propose a modification of the RANSAC algorithm, dubbed
CC-RANSAC, by defining the following measure of fitness:

o ¼ jICðPÞj ðCC-RANSACÞ ð2Þ

where ICðPÞ is the largest connected component of inliers with 8-
neighbor topology inherited from the image grid. This idea embeds
the observation that data points that are the inliers of a ‘‘correct’’
plane cluster contiguously in space, whereas a plane straddling
across two planar patches typically produces two disconnected sets
of inliers (see Fig. 6 (c)).

Using IC for evaluating the fitness of a candidate plane ensures
that only the inliers from a single planar patch will contribute to
this measure. This is indeed the case for Fig. 6 (d), where the red
points represents the inliers belonging to IC for the same plane as
in Fig. 6 (c).

3.1. Comparative performance assessment – synthetic data

In order to compare the performance of RANSAC and CC-RAN-
SAC quantitatively, we first consider a synthetic data set with noisy
3-D points generated from a model of a step. This allows us to test
the algorithm under a wide variety of controlled conditions. A
range imaging system is assumed to collect data from two planar
patches (each providing 150 by 50 measurements on a regular grid
with point spacing of 1 unit along each axis). The two patches,
which are separated by a distance of h units, are seen from above
under orthography. The measurements are corrupted by Gaussian
noise with standard deviation of r units.

Our initial experiments computed robust planar regression with
different values of the distance between the planar patches, h. Only
one plane is estimated at each time. Since the two patches have the
same number of measurements, ideal robust regression would pro-
duce a plane modeling either patch. In order to measure the
discrepancy between the plane P computed by the algorithm and
the fitted patch, we compute the average square distances
!d2
1;
!d2
2

! "
of the points of the two patches to the plane P. Then, we

define the regression error as eðPÞ ¼ minð!d1; !d2Þ. In each experi-
ment, we first fix the number N of random samples used for RAN-
SAC or CC-RANSAC. More precisely, a set of N non-collinear triplets
of measurements are sampled without replacement from the data
pool; the fitness of the plane P identified by each triplet is
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computed using the RANSAC and the CC-RANSAC criteria; the best
fitting plane is chosen for both cases, and a final least squares
regression based on all the inliers is computed. This procedure is
repeated for 500 times, each time with a new set of N triplets.

The median value e of regression error over the 500 experiments
is used for the plots in the following figures (see Fig. 2).

Fig. 3 shows the median regression error e when the distance h
between the two planar patches is varied. The value e of the
threshold for the inliers (as defined in Section 2.1) is set equal to
1 (i.e., equal to the standard deviation of noise). N = 500 random
samples are used for both algorithms. The most noteworthy char-
acteristic of the measurements in Fig. 3 is that, for h ranging be-
tween 4 and 8, RANSAC produces a relative large error, which
drops to a low value for h > H, where H is a break-down value that
in this case is approximately equal to 8. The reason for this behav-
ior is that for small values of h, RANSAC produces planes that strad-
dle between the two patches. When the patches are far enough
from each other (relative to the measurement noise), RANSAC
can produce stable and robust results, reliably fitting either patch.
The benefit of CC-RANSAC is that the break-down value H is re-
duced from 8 to 3. In other words, CC-RANSAC allows for planar fit-
ting in a wider range of step heights than RANSAC for the step
considered in these experiments.

Next, we look at the performance of both algorithms when the
inliers threshold e is changed. As mentioned earlier, a measure-
ment point is considered an inlier with respect to a candidate plane
P when its distance to P is less than e. Robustness to incorrect (or
‘‘mismatched’’) values of e is important, since the actual standard
deviation of noise r is not always known with precision. Fig. 4
(a) shows the median regression error e for a step of height h = 5
as e is changed between 0.25 and 3 (while the standard deviation
of noise r remains equal to 1). It is seen that RANSAC yields basi-
cally the same (large) regression error, regardless of e. CC-RANSAC
produces reliable results for e between 0.5 and 1.25. For larger val-
ues of e, it matches the results of RANSAC. This is not surprising: for
large enough values of e, an incorrect plane straddling across the
two patches will produce a large number of connected inliers.

Fig. 2. Synthetically generated data representing a curb with height h equal to 5
units, with added Gaussian noise (in the vertical direction) with standard deviation
r equal to 1 unit.
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Fig. 3. Median regression error e as a function of the step height h using RANSAC
(stars) and CC-RANSAC (circles).
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Fig. 4. Median regression error e as a function of inlier threshold e using RANSAC (stars) and CC-RANSAC (circles) for two different values of step height (h = 5 and h = 10).
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Fig. 5. Median regression error e as a function of the number of random samples N using RANSAC (stars) and CC-RANSAC (circles) for two different values of step height (h = 5
and h = 10). The bars show the 10- and 90-percentiles of the error distributions.
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The only time CC-RANSAC performs worse than RANSAC is for very
small values of e. The reason in this case is that only very small
connected component are formed, which cannot provide reliable
support for the correct plane.

Fig. 4 (b) shows results from a similar experiment, but this time
for a step with height h equal to 10 units. As seen in Fig. 3, at this
step height RANSAC gives good results when e is set to 1. When e
takes values larger than 1.5, though, RANSAC produces incorrect
fitting planes with large median error. Remarkably, the break-
down point for CC-RANSAC is quite larger: only for e larger than
3.5 does CC-RANSAC start behaving like RANSAC.

Finally, in Fig. 5 we show the median, along with the 10- and
90-percentile, of the regression error as a function of the number
N of random samples used by the algorithms. When step height
is set to 5 (with r = e = 1), CC-RANSAC produces relatively stable
results for NP 100. Note that the median error for RANSAC re-
mains basically constant, giving experimental evidence to the fact
that incorrect regression is not a consequence of poor sampling in
this case. For h = 10, the two algorithms perform substantially as
well when N is changed.

3.2. Comparative performance assessment – TOF measurements

Here we consider the measurements shown in Fig. 6 (a), ac-
quired by a Canesta TOF camera in front of a curb, as a study case.
The goal is to find the prominent planar patch, shown in red in
Fig. 6 (a). (Although there are two more planar patches visible in
the scene, the one shown in red in Fig. 6 (b) has the largest number
of data points.)

Even when the ground truth plane P0 is available, it is impossi-
ble (or at least unpractical) to label each data point as belonging to
a particular planar patch. This means that the regression error
measure proposed in the previous section cannot be used here.
We thus define a different ‘‘goodness’’ measure, that does not re-
quire knowledge of which patch each points belongs to. Given a
candidate plane P, we define its quality qðPÞ as the number of
inliers of P that are also inliers of the ‘‘ground truth’’ plane P0,
normalized by the number of inliers of P0 :

qðPÞ ¼ jIðPÞ \ IðP0Þj=jIðP0Þj ð3Þ

Note that qðPÞ ¼ 0 when P is far enough from the planar patch, and
qðPÞ ¼ 1 when P coincides with P0. Hence, q seems like an appro-
priate and simple to compute measure for describing how well a gi-
ven plane fits the planar patch.2

Our first step is to compute the statistical correlation between
fitness o of a candidate plane and its quality q. More precisely,
we estimate the joint probability density function (pdf) of q and
o, fq,o(q,o) by sampling the space of possible planes, where for each
plane sample P, o is set equal to either jIeðPÞj or to jIC(P)j based on
the data of Fig. 6 (a). Note that, although the space of candidate
planes is discrete (since each plane is determined by a triplet of
measured points), we make the simplifying assumption that it is
continuous in our analysis. The two joint pdf’s, computed using
the Parzen window method from a set of 5000 random sample
planes, are shown in Fig. 7; these plots reveal that, for both choices
of fitness, the joint pdf of q and o is characterized by two main
‘‘ridges’’, corresponding to two different clusters of planes.

We now show how fq,o(q,o) can be used to evaluate the ex-
pected performance of RANSAC or CC-RANSAC. More precisely,
let qN be the random variable describing the quality of the plane
chosen by either algorithm after N iterations (where each iteration
corresponds to a randomly selected candidate plane). If {on} are the

measured fitness values of the N candidates planes, then each algo-
rithm chooses the plane P with oðPÞ ¼ !o, where !o ¼ maxfoig.

The pdf of qN can be found as follows:

fqN ðqÞ ¼
Z 1

$1
fqN j!oðqjoÞf!oðoÞ do ð4Þ

given that qN represents the quality of the plane with the highest
fitness measure, it is clear that fqN j!oðqjoÞ ¼ fqjoðqjoÞ. The pdf of !o
can be easily derived based on the fact that the samples are drawn
independently:

f!oðoÞ ¼ NfoðoÞFN$1
o ðoÞ ð5Þ

Fig. 6. (a): Range data collected in front of a curb. (b): Optimal planar fit to the
lower planar patch (inliers with respect to the plane are shown in red). (c) Incorrect
planar fit (P) and inliers in IeðPÞ. (d) Same plane as in (c) but with inliers in ICðPÞ.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

2 Note that, as opposed to the regression error e used in the previous section, a high
value of the quality q indicates good algorithm performance.
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where Fo(o) is the cumulative distribution function (cdf) of o:

FoðoÞ ¼
Z o

$1
foðuÞdu ð6Þ

All of those quantities are easily computed by numerical integration
starting from fq,o(q,o).

Fig. 8 shows the pdf fqN ðqÞ for RANSAC and CC-RANSAC for dif-
ferent numbers N of iterations. It is interesting to note that RANSAC
yields a bimodal distribution: since the two planes of Fig. 6 (a) and
(c) both receive good inlier support, the algorithm may choose one
or the other with almost the same likelihood (although the
incorrect plane receives higher probability mass as the number
of iterations increases). RANSAC-CC, instead, yields a unimodal dis-
tribution that is peaked around a high quality value, meaning that
it almost invariably chooses a plane that is close to the optimal
one. Even if only a limited amount of iterations (e.g., 100) is used,
the chosen plane is likely to have a good quality value.

3.3. Planar fitting examples for curbs and ramps

This section presents a few experimental results using CC-RAN-
SAC, in order to highlight the potential of this approach for curb
and ramp detection. These examples are of interest for automotive
applications, such as safe parking systems. Note that, although we
only present results for ramps and steps, these patterns can be re-
garded as the building blocks for virtually any structure that only
comprises planar surfaces. For example, an indoor staircase, which
could be useful to detect for autonomous or semi-autonomous
navigation (e.g., for the assisted control of a motor wheelchair
(Murarka et al., 2006)), can be seen as a sequence of steps. The

crucial aspect, regardless of the type of structure, is that enough
datapoints support each planar patch; in the case of autonomous
navigation, for example, a staircase would probably be seen as a
ramp from a distance and the steps would become visible as the
robot, or the wheelchair, approaches it.

In Fig. 9, as well as in Fig. 6, inliers are represented with thick
points, with color indicating to the plane they are closest to. For
each fitting plane, we show the convex hull of its closest inliers,
projected onto the planes.

Fig. 9 (a) shows the three best fitting planes to the data of Fig. 6.
After the dominant plane has been found, the corresponding inliers
are removed from the data, and the operation is repeated until a
maximum number of planes is found, or the highest planar fitness
for the remaining point is below a certain threshold.

Fig. 9 (b) shows the result to a similar curb taken from a larger
distance. In this case, only two fitting planes were found. Note that
the fit is pretty good, in spite of the planar patches being close to
each other.

Examples of ramp modeling are shown in Fig. 9 (c) and (d). In
particular, Fig. 9 (d) is based on measurements taken of the ramp
shown in Fig. 1 (b). The red planar patch corresponds to the
descending concrete surface in the ramp; the blue patch represents
the asphalt surface at the bottom of the ramp; while the green
patch corresponds to the surface covered in soil to the left of the
ramp. Note that, contrary to what one would hope, the green and
the blue patches do not intersect. This is due to the fact that the
measurements supporting the green patch are biased by the pres-
ence of a tree stump, visible near the left edge of Fig. 1. Nonethe-
less, the algorithm is shown to produce very good planar fits to
the different elements of the scene, which may enable further rea-
soning and recognition.
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Fig. 7. Graphical representation of the joint densities fq,o(q,o) for the data of Fig. 6 (a) with (a) o ¼ jIeðPÞj and (b) o ¼ jICCðPÞj.
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Fig. 8. Plots of the pdf fqN ðqÞ of the quality of the plane chosen in the case of Fig. 6 using (a) RANSAC and (b) CC-RANSAC with a variable number N of iterations.
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4. Conclusions

The ability to accurately measure the geometry of the scene en-
ables systems relying on range sensors, for instance TOF sensors, to
recognize features that are critical for many applications, such as
safe parking. In this paper we concentrate on situations where this
task can be impaired by the presence of multiple planar structures
as in the case of curbs and ramps, a situation that is extremely
common in urban environments. These are particularly challenging
features that cannot be reliably detected using conventional ultra-
sound and microwave sensors.

In order to describe the geometry of a curb or of a ramp, we per-
form robust fitting to the different visible planar patches. We have
shown that the popular RANSAC algorithm may fail in the case of a
shallow curb; this result is in agreement with previous work by
Stewart (1997). In order to deal with these situations, we propose
a new algorithm, CC-RANSAC, that uses only the largest connected

component of inliers to evaluate the fitness of a candidate plane.
This seemingly minor modification may in fact yield substantially
better fits than RANSAC.

A critical analysis of CC-RANSAC brings a consideration to light.
The assumption that inliers cluster together into one large con-
nected component, although intuitively correct, needs to be inves-
tigated further. It is clear that the size of the largest connected
component depends on the distribution of the distances di of the
data points to the candidate plane as well as on the chosen thresh-
old e. If e is too small, only isolated inlier clusters will form, as
shown by our experiments of Section 3.1. If ! is too large, clusters
of inliers corresponding to different planar patches may end up
connecting with each other.

In future work we will investigate methods to increase the
robustness of this approach by considering different ways to clus-
ter the inliers. For example, one could use the isophotic metric
(Pottmann et al., 2004), that combines Eulidean distance and dis-
tance between normals. This could help in situations with ‘‘holes’’
in the range data, which are liable to create multiple connected
components where only one connected component is expected.3
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